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Abstract

A solution for discrete multi-exponential analysis of T2 relaxation decay curves obtained in current multi-echo imaging protocol

conditions is described. We propose a preprocessing step to improve the signal-to-noise ratio and thus lower the signal-to-noise ratio

threshold from which a high percentage of true multi-exponential detection is detected. It consists of a multispectral nonlinear edge-

preserving filter that takes into account the signal-dependent Rician distribution of noise affecting magnitude MR images. Discrete

multi-exponential decomposition, which requires no a priori knowledge, is performed by a non-linear least-squares procedure

initialized with estimates obtained from a total least-squares linear prediction algorithm. This approach was validated and optimized

experimentally on simulated data sets of normal human brains.

� 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

Multi-exponential fitting techniques are important

for a realistic analysis of T2 relaxation curves measured

in biological tissues. This is especially true for the in vivo

study of human brain white matter (WM) [1].

Multi-exponential decomposition is an example of a
linear inverse problem with discrete data. It affords de-

pendent solutions because the projection basis, com-

posed by the different exponential functions, is severely

non-orthogonal. This kind of inverse problem is ill-

posed [2]: a small error in the data (the main result of

noise) can produce an extremely large error in the so-

lutions, which may therefore lose all physical meaning.

Owing to the intrinsic trade-off between signal-to-
noise ratio (SNR) and spatial resolution, and the nec-

essarily limited acquisition time available for in vivo

studies, the current multi-echo imaging protocol leads to

limited SNR (� 100). Also, the minimum interval be-

tween successive samples, DTE, cannot be less than 10

ms. Multi-exponential analysis is thus challenging, es-

pecially when two relaxation components are to be re-

solved from a limited number N of points that rapidly

approach noise levels. Because of these technical re-

strictions of MRI, only a few implementations have

been described for the characterization of tissues [3–12]
or pathology [13–15].

Here, a general two-step approach is proposed for

performing a multi-exponential decomposition from

multi-echo images obtained in limited SNR and DTE
conditions. The first step uses a multispectral non-linear

edge-preserving (MNLEP) filter [16], modified to ac-

count for the Rician nature of the magnitude data. The

second step is a discrete multi-exponential decomposi-
tion performed by a non-linear least-squares (NLLS)

fitting procedure initialized with parameter guesses ob-

tained from a total least-squares linear prediction

(LPTLS) procedure.

This approach was tested and validated on simulated

datasets characterized by the multi-exponential behavior

of normal human brains. Potential practical applications
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of this multi-exponential reconstruction method are
proposed.

2. Theory

Several studies have demonstrated from Monte-Carlo

simulations that SNR must exceed a critical threshold

for a two-component T2 distribution to be resolved [17–
19]. In the example of bi-exponential T2 relaxation (long-
T2 component of 80ms and short-T2 component of 20ms
with a relative amplitude of 15%) and the sampling

conditions (TE1 ¼ 20ms, DTE ¼ 15ms), the SNR must

exceed a threshold of 1000 to guarantee that the

Cram�eer-Rao lower bound (CRLB) is less than 10% for

each parameter, and insure tolerable accuracy in the

estimation of the shortest relaxation time.
Spatial filtering offers a way to improve SNR while

obviating increased acquisition time, which is unac-

ceptable for in vivo studies. An appropriate filter should

meet the following criteria:

1. It should preserve the edge information (object

boundaries) so that no additional partial volume ef-

fect is introduced.

2. It should take into account the Rician behavior of
noisy magnitude signals for the estimation of the un-

derlying true intensity. This is especially important in

the case of multi-exponential decomposition, since

late-TE images are characterized by regions display-

ing poor SNR, producing severe discrepancies be-

tween observed magnitude and true intensity [20,21].

3. It should use interframe information, since a multi-

spectral signal (i.e., vector-valued, multichannel or
multivariate) of size N is available in each voxel loca-

tion. This property insures that all echo images are

processed simultaneously.

To meet these conditions, the main principles of the

multispectral nonlinear edge-preserving (MNLEP) filter

introduced by Soltanian-Zadeh et al. [16] were adopted.

The original algorithm was modified to incorporate the

Rician probability distribution of magnitudes. LetW be
a window of finite size S. IfMj

i is the magnitude of frame

j (i.e., the image obtained at TEj, in our multi-echo

protocol) observed in the ith voxel of the window W

centered on the processed voxel with 16 i6 S, the vec-
tor-valued magnitude signal is Mi ¼ ½M1

i ;M
2
i ; . . . ;M

N
i �

T.

The first step of the MNLEP filter is a discrimination

stage which consists in using the interframe information

to select the voxels of W representing the same tissue.
Hence the Euclidean distance between the ith voxel

vector of W and the voxel vector in the center of W is

calculated and compared with a user-defined threshold

g. This ith voxel vector is considered to represent the

same tissue as the central voxel vector if the distance is

smaller than the threshold g. By repeating this com-

parison for each voxel of W, the Euclidean distance

discriminator gathers a set fM1;M2; . . . ;MKg of K

magnitude vectors 16K 6 S that are considered to

represent the same tissue and thus differ only by noise,

assuming spatial ergodicity. The second step of the

MNLEP filter consists in attributing a de-noised signal

to the central voxel estimated from the K observations

(intraframe smoothing). The amplitude M̂Mj of frame j

attributed to the central voxel is given by

M̂Mj ¼ FðMj
1;M

j
2; . . . ;M

j
KÞ; ð1Þ

where F is any scheme that gives an estimate of the true

intensity from noisy magnitude samples (see appendix

A). This estimation step is applied for each frame j and

then repeated N times.

The final algorithm implemented for multi-exponen-

tial analysis of T2 decay curves successively uses this

MNLEP filter adapted to magnitude images, and a

discrete multi-exponential decomposition (see above).

3. Materials and methods

3.1. Multi-exponential decomposition

In the case of discrete sums of P exponentials and

Gaussian distributed samples, the nonlinear least-
squares (NLLS) method is well-suited for performing

multi-exponential analysis in a statistically optimal way.

NLLS finds the set of parameters that minimizes the

following least-squares v2 misfit

v2ðP Þ ¼ 1

r2
F

XN
i¼1

M̂Mi

"
	
XP
j¼1

Aj exp

�
	 TEi

Tj

�#2
; ð2Þ

where Tj and Aj refer respectively to the relaxation time

and the amplitude for the jth exponential component,

and rF the standard deviation of noise after filtering. The

NLLSmethod has twomajor prerequisites: the numberP

of exponentials must be known, and a set of good enough

initial parameter guesses has to be provided.

For that purpose, an operator-independent inversion

algorithm based on the linear prediction (LP) principle
was used, which requires no parameter guesses. The LP

model of Prony was also used to fit a finite number of

exponentially damped sinusoids to the time-domain

NMR signal [22]. It is applicable to the multi-exponential

decays under the constraint that all sinusoid phases and

frequencies are equal and null. The linear prediction

problem is solved in the total least-squares (TLS) sense to

produce accurate estimates of the remaining damping
factors, in spite of low SNR decays [23,24].

To decide the number P of exponentials, multi-ex-

ponential analysis was applied iteratively with increasing

values of P until no additional exponential could be

considered as further improving the v2 misfit. For this

purpose, an F test was used [25]. An additional expo-
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nential component was judged to improve fit only if the
probability that the noise accounted for the i misfit

improvement when comparing v2ðP Þ and v2ðP þ 1Þ was
under 1%.

3.2. Analysis of the quantitative impact of filtering prior

to multi-exponential analysis

The algorithm was validated on simulated data sets
because it defines a ground truth for a given SNR in

contrast to in vivo acquisition. The quantitative impact

of MNLEP preprocessing on homogeneous noisy re-

gions was first studied (i.e., noise filtration). For this

purpose, 1000 Rician-distributed bi-exponential relaxa-

tion curves of size K ¼ 5� 5 were simulated (32 echo

times with TE1 ¼ DTE ¼ 10ms). For each frame at a

given TE, the true amplitude a(TE) was estimated using
three different estimators: the arithmetic mean, the bias

corrected quadratic mean and the maximum likelihood

estimator. Each of these is described in the appendix.

Finally the multi-exponential analysis was applied and

the performance of the different estimators was com-

pared for the percentage of bi-exponential detection and

the bias and standard deviation of the estimated pa-

rameters (i.e., the short and long relaxation times TS and
TL and the relative amplitude AS of the short compo-

nent). This comparison was made in two different situ-

ations, for varying SNR and constant tissue

characteristics (corresponding to the WM model of

Table 1), and for constant SNR (¼ 100) and varying

relative amplitude of Ts (see Fig. 1).
Noisy Rician-distributed magnitudes were generated

by taking the magnitudes of real and imaginary signals
obtained by adding two independent Gaussian noises to

the true values aðTEÞ � cos/ and aðTEÞ � sin/, where / is

a constant phase value. Gaussian noises were generated

using the random_normal subroutine of the mathemati-

cal IMSL library (Visual Numerics, Houston, TX), and

the level of noise r was adjusted by defining SNR as

SNR ¼ aðTE ¼ 0Þ=r ¼ r	1: ð3Þ

3.3. Analysis of edge preservation

Synthetic multi-echo images were derived from the

anatomical model of normal human brain developed at

the McConnell Brain Imaging Center (http://www.
bic.mni.mcgill.ca/brainweb/) [26]. This model consisted

of a set of tissue membership volumes, one for each

tissue class. The voxel value reflected the proportion of

tissue present in that voxel. 2D simulated multi-echo

images composed of 32 frames at different echo times

(TE1 ¼ DTE ¼ 10ms) were generated from the three

main tissue classes of the model (CSF, WM, and GM).

In each voxel, the true intensity a of each frame dis-
played the following multi-exponential behavior

aðTEÞ ¼ vCSF � aCSFðTEÞ þ vGM � aGMðTEÞ þ vWM

� aWMðTEÞ

with

vCSF þ vGM þ vWM ¼ 1; ð4Þ
where ai and vi represent respectively the T2 decay curve
and the proportion for the tissue class i. The parameters
characterizing the behavior of the T2 decay curve ai for
each considered tissue class are indicated in Table 1.

In the MNLEP scheme, the Euclidean distance be-

tween a voxel vector in the moving window W and the

voxel vector in the center is calculated and compared

with a specific threshold g [16]. Thus g results from a

trade-off between suppression of noise and preservation

of original partial volume effect. To solve this problem,
the mean absolute difference (MAD) was calculated for

different values of g. This index defined by

MAD ¼
XImage
r

jpgðrÞ 	 pðrÞj ð5Þ

measures the global error between the map of parameter

pg obtained with the threshold g in the MNLEP-Qua-

dratic filter (i.e., the MNLEP version integrating the

bias-corrected quadratic mean, S ¼ 5� 5) and the ref-

erence map of the parameter p obtained by multi-ex-
ponential decomposition of noise-free images. This sum

was calculated for each parameter, normalized and

presented in Fig. 2.

Finally, the edge preservation properties of MNLEP-

Quadratic filter (g ¼ 3, S ¼ 5� 5) were studied and

compared with those of alternative filters; the Gaussian

linear filter and the vector median non-linear filter. The

width of the Gaussian impulse response was adjusted to
induce approximately the same level of noise reduction

as the MNLEP filter. The vector median approach

(S ¼ 5� 5) was chosen because it concerns an edge-

preserving multispectral filter, which performs best

performance for noise attenuation compared with the

other multispectral filters based on the reduced ordering

principle [27]. Fig. 3 shows profiles obtained by applying

these different filters prior to multi-exponential analysis.
Data were processed on an IRIX O2 workstation

(Silicon Graphics, Mountain View, CA). The software,

including filtering, multi-exponential analysis, numerical

Table 1

Parameters characterizing the behavior of the T2 decay curve for the

three tissue classes considered in the simulation

Tissue

type

Number of

components

Relaxation

time (ms)

Amplitude

CSF 1 2000 1.0

GM 1 100 1.0

80 0.90

WM 2 20 0.10
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Fig. 1. Performance of bi-exponential analysis for different estimators of the true magnitude as a function of the signal-to-noise ratio (left side) and as

function of the relative amplitude AS of the short relaxing component (right side). The estimators were the arithmetic mean (average), the bias-

corrected quadratic mean (quadratic) and the maximum likelihood scheme (ML). The dotted lines indicate a threshold of 10%, bias or standard

deviations above this level correspond arbitrarily to an intolerable degradation of accuracy.
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Fig. 2. Mean absolute difference using different values of threshold g in the MNLEP-Quadratic filter (S ¼ 5� 5).
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simulations and image visualization, was developed by

us using mathematical IMSL and ImageVision libraries

4. Results

4.1. Quantitative impact of filtering prior to multi-

exponential analysis

The basic result obtained from the Fig. 1 is that a
regularization step prior to multi-exponential analysis

improves the percentage of bi-exponential detection and

decreases both bias and uncertainties in the estimated

parameters. More precisely, the MNLEP filtering

markedly improves the detection of true bi-exponential

behavior for a wide range of SNR and amplitude of the

short component. For varying SNR and without filter-

ing (see left side of Fig. 1(a)), the curve behaves as a
sigmoid characterized by a continuous decrease in per-

formance for SNRs ranging from 100 to 300. With fil-

tering, the percentage of detection is optimal for SNR

above 100, with a rapid drop in performance below a

critical threshold SNR of �50–100. The ability to detect
a short component of variable amplitude is also im-

proved when filtering is applied (see right side of Fig.

1(a)). Moreover, this ability does not depend on the
value of the amplitude itself, contrary to what is ob-

served when no filter is applied. Figs. 1(b)–(d) shows

that the lowest bias and uncertainties in the estimated

parameters were always obtained using the bias-cor-

rected quadratic mean and the maximum likelihood

estimator, supporting their superiority in taking into

account the Rician-distributed data sets. The lowest

accuracy was obtained on TS, which is explained by the
lowest CRLB indicating the lowest expected bias-vari-

ance trade-off among all the parameters. These results

also support the choice of the bias-corrected quadratic
mean instead of maximum likelihood estimator in the

MNLEP filter because their performance is almost

equivalent for moderate size Sð�5� 5Þ of window, and
because the bias-corrected quadratic mean requires less

computation.

In the case of mono-exponential behavior of decay

curves (results not shown), the MNLEP step slightly

improves the uncertainties in the estimated parameters
and introduces only a few further partial volume ef-

fects, false bi-exponential behavior seldom being

detected.

4.2. Edge preservation

For the parameters TL and P, the MAD index shown

in Fig. 2 is almost constant and minimum for gP 3r.
For both TS and AS, an optimal threshold is observed for

g ¼ 3r. Hence the mutual minimum 3r should be se-

lected for g as an efficient trade-off between smoothing

and limitation of additional partial volume effect.

Fig. 3 clearly demonstrates the ability of the multi-

exponential decomposition method integrating the

MNLEP-Quadratic filter (g ¼ 3, S ¼ 5� 5) to generate

profiles with small bias and low partial volume effect. In
comparison, while Gaussian linear filter is efficient for

noise smoothing and so for detecting bi-exponential

behavior, it introduces severe artifacts due mainly to the

partial volume effect near the transitions between re-

gions. Conversely, the vector median filter does not in-

troduce any further partial volume effect, but the noise

reduction factor is too low to detect the multi-expo-

nential processes. The detected single component is thus
mainly influenced by the bulk component of the noisy

multi-exponential process. These results are explained

by the properties of median filters, which are designed to

filter signals contaminated by long-tailed distributed

noise (e.g., impulsive noise), which is not the case for the

Rician-distributed noise.

Fig. 4 compares the different maps obtained using

the MNLEP-Quadratic filter (g ¼ 3, S ¼ 5� 5) or no
filter at all with the ground truth for SNR¼ 100. Vi-

sually, the main improvement concerns the better de-

tection of the short component TS in WM owing to the

lower impact of propagated noise when the modified

MNLEP filter is applied. Moreover, the edges are well

preserved near the transitions between the different

tissues, for example near the boundaries between WM

and GM. Problems occur for voxels showing partial
volume effects between GM and CSF. In this case, the

results depend on their relative amplitudes. Best results

are obtained for approximately equal populations

(fraction � 40–60%). If a single exponential is detected,

the remaining relaxation time ranges between TS and TL
but is only loosely related to the weighted mean (i.e.,

ASTS þ ð1	 AsÞTLÞ.

Fig. 3. Profiles measured in the multi-exponential maps using different

filters prior to multi-exponential analysis; the MNLEP-Quadratic filter

(S ¼ 5� 5, g ¼ 3r), the Gaussian linear filter (impulse response width

of 1.41 leading to a noise reduction factor of 5) and the vector median

before (S ¼ 5� 5). The chosen profile is a horizontal line passing

through the splenium of the corpus callosum of Fig. 4.
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Fig. 4. Multi-exponential maps obtained from noise-free multi-echo images (left side), from noisy multi-echo images filtered by a MNLEP-Quadratic

scheme (S ¼ 5� 5, g ¼ 3r) before multi-exponential analysis (center) and from noisy multi-echo images with no filter (right side). In this bi-ex-

ponential situation at SNR¼ 100, four different maps are reconstructed: (a) indicating the number P of detected exponentials (i.e., one or two), (b)

giving the short exponential component TS, (c) giving the long exponential components TL and (d) corresponding to the relative fraction of TS. When

only one exponential component is resolved, the value is arbitrarily attributed to the TL-map and the value of TS is set to zero.
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5. Discussion

An elevated SNR is essential for detecting bi-expo-

nential behavior of relaxation curves in experimental

conditions. The results presented here, obtained on

simulated decay curves and images, show that a pre-

processing step with the modified MNLEP filter im-

proves the multi-exponential analysis. For both varying

SNR and amplitude of the short component, the per-
centage of bi-exponential detection increases (see Fig.

1(a)), while both bias and uncertainty are significantly

reduced (see Figs. 1(b)–(d)). The effects of Rician noise

were better corrected using the bias-corrected quadratic

mean or the maximum-likelihood estimator. It is im-

portant to stress that the non-zero mean of magnitude in

the region of low SNR should not be interpreted as a

constant offset, and thus that the latter estimation
schemes should not be replaced by a subtraction of a

constant offset from the entire decay curve.

Alternative filtering approaches have recently been

proposed to meet the first two conditions stated above

(i.e., edge preservation and consideration of Rician be-

havior of noise), namely a wavelet-based scheme applied

on either the square magnitude image [28] or the two

channels of the complex image [29,30], and an aniso-
tropic diffusion filter [31]. Though efficient, these filters

addressed the case of a single image and so do not meet

the third condition (i.e., the use of multispectral infor-

mation). Conversely, a multispectral form of anisotropic

diffusion filter has been proposed [32] that does not

address the Rician behavior of noise.

Whatever the estimation scheme chosen, the MNLEP

filter requires an estimate r̂r of the a priori unknown
noise standard deviation r (see Eqs. A.3 and A.5). In

practice, a large region of interest was manually placed

in the magnitude image background, and r̂r was calcu-

lated from the selected values [33]. Hence r̂r is not per-

fectly error-free, owing to the possible presence of

ringing, motion and/or ghosting artifacts in the region of

interest. Simulations indicate that a large error in r̂r is

tolerable, because when an error of r was introduced in
the MNLEP filter, bi-exponential behavior was still

detected for the whole set of voxels. A large 10% under-

(or over-) estimation of r produced a positive (or

negative) bias on the estimated parameters. Under-

estimation of r also produced a significant increase in

uncertainties.

Since the LP procedure is used for multi-exponential

decomposition, the value of prediction order L has to be
chosen a priori. It is generally advised to choose the LP

matrix as square as possible, i.e., L � N=2 [34]. We

performed multi-exponential decompositions with

different values of L, which indicated that the LPTLS

algorithm will tolerate a wide range of values for the

prediction order (especially when SNR increases)

provided it is chosen larger than the number P of

exponentials. In practice, a constant value
L ¼ ðN 	 1Þ=2 was chosen. In this case the LPTLS

method finds the single solution to an over-determined

linear prediction problem. The proposed algorithm

based on an NLLS procedure initialized with estimates

obtained from an LPTLS algorithm was chosen because

it directly produces a discrete decomposition of decay

curves, which can be displayed in the form of parametric

maps. This circumvents the integration necessary to go
from a regularized decomposition in a continuum of

relaxation constants [10] to a non-continuous set of re-

laxing components. However, it is possible to use a

continuous decomposition method (e.g., non-negative

least squares algorithm) instead of the present discrete

one for characterizing components that are poorly

modeled by a delta function, and to benefit from the

SNR boost due to MNLEP filtering.
The multi-exponential method is applicable to any

type of decay data obtained by MR imaging, such as T2-

decay or diffusion-weighted decay obtained with in-

creasing b-factor [35]. However, LP exclusively handles

evenly sampled data, i.e., TEi ¼ TE0 þ i � DTE. In the

case of uneven sampling, the decay must be interpolated

voxelwise prior to multi-exponential decomposition.

We first demonstrate that the MNLEP filter, modi-
fied to take into account the Rician behavior of noisy

magnitude signals, is a general solution to improve the

SNR of MR images before parameter estimation, with

no increase in acquisition time. Moreover, the LPTLS

algorithm followed by the NLLS scheme and validated

by an F test is an efficient approach for obtaining dis-

crete multi-exponential decomposition, without intro-

duction of a priori knowledge.
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Appendix A

After interframe discrimination step which is the first
step of a MNLEP filter [16], a Rician-distributed data

set of K noisy magnitudes is available from which the

true amplitude must be estimated, i.e.,

M̂MF ¼ FðM1;M2; . . . ;MKÞ: ðA:1Þ
Note that the superscript corresponding to the frame
index has been discarded (see Eq. (1)), because the same

estimation step is applied for each of the N frames. To a

specific estimator corresponds a version of MNLEP

filter differing from their noise regularization properties.

The simplest estimator F is the following arithmetic

mean
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M̂MMean ¼
1

K

XK
t¼1

Mi: ðA:2Þ

It is well-known that M̂MMean is the maximum likelihood

(ML) optimal estimator for Gaussian distributed sam-
ples. Hence it becomes biased as SNR decreases due to

marked deviation of the Rician distribution compared

with the Gaussian one [21,36]. It is not possible to re-

move the bias affecting M̂MMean by simply subtracting a

constant baseline because the bias depends on the SNR.

An alternative consists in employing the unbiased esti-

mator M̂MQuadratic of the underlying signal based on the

quadratic mean given by [37,38]

k ¼ 1

K

XK
i¼1

M2
i 	 2r2 ðA:3Þ

if k P 0 then M̂MQuadratic ¼
ffiffiffi
k

p
else M̂MQuadratic ¼ 0; ðA:4Þ

where r is the standard deviation of the zero-mean

Gaussian noise affecting the real and imaginary im-

ages.

Though unbiased, this estimator is theoretically sub-
optimal [21,39]. On the contrary, the ML approach is

optimal because as the number of samples increases the

bias tends to zero and the covariance matrix of the es-

timates converges towards the Cram�eer-Rao bound. ML

estimation of the true amplitude is obtained by finding

the maximum of the log-likelihood function of the

samples. This is done by solving the following non-linear

equation (i.e., the stationary condition of the log-likeli-
hood function) which was first introduced in [33]:

M̂MML 	
1

K

XK
i¼1

Mi
I1
I0

MiM̂MML

r2

 !
¼ 0; ðA:5Þ

where I1 is the first-order modified Bessel function, the

first derivative of I0. If (A.3) is strictly positive, Eq. (A.5)
leads to three solutions; 0 and two symmetric solutions

�b with b > 0 [39]. In practice, only b is relevant. To

select this root, a practical solution consists in solving

Eq. (A.5) using any iterative mono-dimensional root

finding method initialized by the estimate M̂MQuadratic given

by Eq. (A.4). If (A.3) is not strictly positive, that may be
possible for particular realizations of the noise, the

single solution is M̂MML ¼ 0 [39].

References

[1] K.P. Whittall, A.L. MacKay, D.K. Li, Are mono-exponential fits

to a few echoes sufficient to determine T2 relaxation for in vivo

human brain? Magn. Reson. Med. 41 (1999) 1255–1257.

[2] M. Bertero, C. DeMol, E.R. Pike, Linear inverse problems with

discrete data. I: General formulation and singular system analysis,

Inverse Problems 1 (1985) 301–330.

[3] K. Gersonde, L. Felsberg, T. Tolxdorff, D. Ratzel, B. Strobel,

Analysis of multiple T2 proton relaxation processes in human

head and imaging on the basis of selective and assigned T2 values,

Magn. Reson. Med. 1 (1984) 463–477.

[4] M.D. Does, J.C. Gore, Rapid acquisition transverse relaxometric

imaging, J. Magn. Reson. 147 (2000) 116–120.

[5] R.L. Kamman, C.J. Bakker, P. van Dijk, G.P. Stomp, A.P.

Heiner, H.J. Berendsen, Multi-exponential relaxation analysis

with MR imaging and NMR spectroscopy using fat-water

systems, Magn. Reson. Imaging 5 (1987) 381–392.

[6] A. Fransson, A. Ericsson, B. Jung, U. Henriksson, Resolution of

biexponential transverse relaxation in magnetic resonance imag-

ing, Phys. Med. Biol. 34 (1989) 305–314.

[7] R.V. Mulkern, S.T. Wong, P. Jakab, A.R. Bleier, T. Sandor,

F.A. Jolesz, CPMG imaging sequences for high field in vivo

transverse relaxation studies, Magn. Reson. Med. 16 (1990) 67–

79.

[8] K.H. Cheng, In vivo tissue characterization of human brain by

chisquares parameter maps: multiparameter proton T2-relaxation

analysis, Magn. Reson. Imaging 12 (1994) 1099–1109.

[9] A. MacKay, K. Whittall, J. Adler, D. Li, D. Paty, D. Graeb, In

vivo visualization of myelin water in brain by magnetic resonance,

Magn. Reson. Med. 31 (1994) 673–677.

[10] K.P. Whittall, A.L. MacKay, D.A. Graeb, R.A. Nugent, O.K. Li,

D.W. Paty, In vivo measurement of T2 distributions and water

contents in normal human brain, Magn. Reson. Med. 37 (1997)

34–43.

[11] P.J. Gareau, B.K. Rutt, C.V. Bowen, S.J. Karlik, J.R. Mitchell, In

vivo measurements of multi-component T2 relaxation behaviour

in guinea pig brain, Magn. Reson. Imaging 17 (1999) 1319–1325.

[12] M.D. Does, R.E. Snyder, Multiexponential T2 relaxation in

degenerating peripheral nerve, Magn. Reson. Med. 35 (1996) 207–

213.

[13] L.R. Schad, G. Brix, W. Semmler, F. Guckel, W.J. Lorenz, Two-

exponential analysis of spin-spin proton relaxation times in MR

imaging using surface coils, Magn. Reson. Imaging 7 (1989) 357–

362.

[14] L.R. Schad, G. Brix, I. Zuna, W. Harle, W.J. Lorenz, W.

Semmler, Multiexponential proton spin-spin relaxation in MR

imaging of human brain tumors, J. Comput. Assist. Tomogr. 13

(1989) 577–587.

[15] J.P. Armspach, D. Gounot, L. Rumbach, J. Chambron, In vivo

determination of multiexponential T2 relaxation in the brain of

patients with multiple sclerosis, Magn. Reson. Imaging 9 (1991)

107–113.

[16] H. Soltanian-Zadeh, J.P. Windham, A.E. Yagle, A multidimen-

sional nonlinear edge-preserving filter for magnetic resonance

image restoration, IEEE Trans. Image Process. 4 (1995) 147–

161.

[17] K.P. Whittall, MJ. Bronskill, and R.M. Henkelman, Investigation

of analysis techniques for complicated NMR relaxation data, J.

Magn. Reson. 95 (1991) 221–234.

[18] N.J. Clayden, B.D. Hesler, Multiexponential analysis of relaxa-

tion decays, J. Magn. Reson. 98 (1992) 271–282.

[19] S.J. Graham, P.L. Stanchev, M.J. Bronskill, Criteria for analysis

of multicomponent tissue T2 relaxation data, Magn. Reson. Med.

35 (1996) 370–383.

[20] R.M. Henkelman, Measurement of signal intensities in the

presence of noise in MR images, Med. Phys. 12 (1985) 232–233.

[21] H. Gudbjartsson, S. Patz, The Rician distribution of noisy MRI

data [published erratum appears in Magn Reson Med 1996

Aug;36(2):332], Magn. Reson. Med. 34 (1995) 910–914.

[22] H. Barkhuijsen, R. De Beer, M.M. Bov�eee, D. Van Ormondt,

Retrieval of frequencies amplitudes damping factors and phases

from time-domain signals using a linear least-squares procedure,

J. Magn. Reson. 61 (1985) 465–481.

[23] A. Rahman, K.B. Yu, Total least squares approach for frequency

estimation using linear prediction, IEEE Trans. Acoustics Speech

Signal Process. ASSP-35 (1987) 1440–1454.

J.-M. Bonny et al. / Journal of Magnetic Resonance 161 (2003) 25–34 33



[24] C.F. Tirendi, J.F. Martin, Quantitative analysis of NMR spectra

by linear prediction and total least squares, J. Magn. Reson. 85

(1989) 162–169.

[25] B.E. Dumitresco, J.P. Armspach, D. Gounot, D. Grucker, Y.

Mauss, J. Steibel, D. Wecker, J. Chambron, Multi-exponential

analysis of T2 images, Magn. Reson. Imaging 4 (1986) 445–

448.

[26] R.K. Kwan, A.C. Evans, G.B. Pike, MRI simulation-based

evaluation of image-processing and classification methods, IEEE

Trans. Med. Imaging 18 (1999) 1085–1097.

[27] K. Tang, J. Astola, Y. Neuvo, Nonlinear multivariate image

filtering techniques, IEEE Trans. Image Process. 4 (1995) 788–

798.

[28] R.D. Nowak, Wavelet-based Rician noise removal for magnetic

resonance imaging, IEEE Trans. Image Process. 8 (1999) 1408–

1419.

[29] M.E. Alexander, R. Baumgartner, A.R. Summers, C. Windisch-

berger, M. Klarhoefer, E. Moser, R.L. Somorjai, A wavelet-based

method for improving signal-to-noise ratio and contrast in MR

images, Magn. Reson. Imaging 18 (2000) 169–180.

[30] S. Zaroubi, G. Goelman, Complex denoising of MR data via

wavelet analysis: application for functional MRI, Magn. Reson.

Imaging 18 (2000) 59–68.

[31] J. Sijbers, A.J. den Dekker, A. Van der Linden, T.M. Verhoye, D.

Van Dyck, Adaptive anisotropic noise filtering for magnitude MR

data, Magn. Reson. Imaging 17 (1999) 1533–1539.

[32] G. Sapiro, D.L. Ringach, Anisotropic diffusion of multivalued

images with applications to color filtering, IEEE Tram. Image

Process. 5 (1996) 1582–1586.

[33] J.M. Bonny, J.P. Renou, M. Zanca, Optimal measurement of

magnitude and phase from MR data, J. Magn. Reson. 113 (1996)

136–144.

[34] S. Van Huffel, H. Chen, C. Decanniere, P. Van Hecke, Algorithm

for time-domain NMR data fitting based on total least squares, J.

Magn. Reson. A 110 (1994) 228–237.

[35] T. Niendorf, R.M. Dijkhuizen, D.G. Norris, M. van Lookeren

Campagne, K. Nicolay, Biexponential diffusion attenuation in

various states of brain tissue: implications for diffusion-weighted

imaging, Magn. Reson. Med. 36 (1996) 847–857.

[36] I.E. Holden, J.R. Halama, B.H. Hasegawa, The propagation of

stochastic pixel ncise into magnitude and phase values in the

Fourier analysis of digital images, Phys. Med. Biol. 31 (1986) 383–

396.

[37] G. McGibney, M.R. Smith, An unbiased signal-to-noise ratio

measure for magnetic resonance images, Med. Phys. 20 (1993)

1077–1078.

[38] A.J. Miller, P.M. Joseph, The use of power images to perform

quantitative analysis on low SNR MR images, Magn. Reson.

Imaging 11 (1993) 1051–1056.

[39] J. Sijbers, A.J. den Dekker, P. Scheunders, D. Van Dyck,

Maximum-likelihood estimation of Rician distribution parame-

ters, IEEE Trans. Med. Imaging 17 (1998) 357–361.

34 J.-M. Bonny et al. / Journal of Magnetic Resonance 161 (2003) 25–34


	Multi-exponential analysis of magnitude MR images using a quantitative multispectral edge-preserving filter
	Introduction
	Theory
	Materials and methods
	Multi-exponential decomposition
	Analysis of the quantitative impact of filtering prior to multi-exponential analysis
	Analysis of edge preservation

	Results
	Quantitative impact of filtering prior to multi-exponential analysis
	Edge preservation

	Discussion
	Acknowledgements
	Appendix A
	References


